DBHD 1.4.1 Canada – nuclear repository in deep rocksalt New Brunswick, Nova Scotia

¹Volker Goebel Dipl.-Ing., ²Gerhard Herres Dr., ³Sonja Philipps Prof.-Dr., ⁴Todd Busch M.A.Sc. ¹University of applied sciences Dortmund / Germany ²University of Paderborn / Dr. Physicist / Germany ³University of Göttingen / Prof. Dr. Geologist / Germany ⁴University of British Columbia / Mechanical Engineering / Canada and the 14.700 radwaste experts of the world who know the DBHD concept

¹ info@ing-goebel.ed, ² herres@thet.uni-paderborn.ed, ³ sonja.philipp@geo.uni-goettingen.ed, ⁴ toddbusch@consulting.ac

Abstract

DBHD is a building plan for a nuclear repository – Deep Big Hole Disposal is now possible by Shaft Boring Machines and Shaft Boring Roadheader tools from Germany – Diameter = 12 M.

DBHD 1.4.1 Canada is a building plan that allows to bring 83.200 tons of spent Candu fuel into deep geological repository - for a price of 12,5 Billion Canadian Dollars over a time of 80 years.

The white DSC containers, in concrete-pellets, in rocksalt, are a safe storage for 1-10 Mio. years. In rocksalt - hard gamma radiation only goes 30 cm far and gases like IOD 129 are encapsulated.

The DBHD building plan has been examined by all 14.700 experts worldwide - without critics. There is a calculation based on German price situation and company offers. - Also a time table.

DBHD concept is mature after years of development. What it needs now is more local geology data on deep rocksalt geologies in the areas New Brunswick and Nova Scotia in north Canada.

It needs a long term calculation/simulation by a scientific team using DBHD geometry/geology that calculates : 1. Geo-Mechanics - 2. Geo-Chemistry - 3. Corrosion and 4. Thermodynamics

We propose a safe "street-ship-street transport" of the DSC's with bumpers on - shielded by a sheet metal hull made of tank-weapon steel – the transport out of town has to be extremely safe.

For the reason of good progress we recommend you to bring the main developer Ing. V. Goebel to Canada – he has 13 years of experience in all themes related to nuclear repository planning ...

We wish you a good conference and encourage you to ask questions concerning DBHD 1.4.1 CA

Keywords: Nuclear Repository for spend Candu fuel, Geological repository in rocksalt geology Dry Storage Containers, Concrete-Pellets, Rocksalt – **83.200 tons capacity for 12,5 Bio. CAD** "Street-Ship-Street Transport" – Safety – Nuclear Safety – Radiation Safety - **Safe Repository**

Picture 001: DBHD 1.4.1 Canada concept explained in a simple picture

1. Introduction

Actually Canadas nuclear industry is doing fine – but they piled up more then 7.120 full DSC in densely inhabited areas and their disposal agency NWMO failed with the 6 th safety case test concerning the old horizontal geological repository idea. As it is not possible to store activated uranium for 100.000 to 1.000.000 years in the biosphere there is an urgent need to build SAFE and deep nuclear repositories into old suitable host-rock geologies like rocksalt. – SAFETY is more then just a word – it is taking responsible actions by the generation that caused the wicked problem. – With DBHD 1.4.1 Canada there is a proven nuclear repository plan available. The need for nuclear power within the power mix of a country will be always given. Therefore all new permits for nuclear plants have to been decided within the context that the nuclear industry takes on its responsibility. – There is already funds of 4,4 Bio. CAD on account for repository.

For this reason all DSC container data and decay heat data were handed over from NWMO to Ing. Goebel / Switzerland, Germany – to develop a DBHD (Deep Big Hole Disposal) concept. DBHD 1.4.2 Canada nuclear repository plan was defined on the base of 30 years experience in Germany with rocksalt, and over 1.040 public scientific papers that have been published by the Parliament Commission on high level nuclear waste storage. This commission debated for more than 2,5 years, and had more than 11 Mio. EUR on hand, to pay scientific expertise. – Canada is the first foreign country having a profit of this extraordinary quality and science development.

In the actual Version 1.4.1 Canada the repository for 83.200 tons in 8.320 DSCs is planned with 10x DBHD locations in New Brunswick and Nova Scotia – invest 12,5 Bio. CAD over 80 years. There is a technical building plan, a calculation and a time table – all based on experience from other nuclear repository planning works – It is on OPG, Bruce and NB Power to decide now !

Picture 002: Surface Installations of DBHD 1.4.1 Canada with the typical white DSC's

2. Science – all art and science that went into the DBHD 1.4.1 Canada plan

- The choice of the right host-rock geology based on epic scientific knowledge
- The thermodynamic calculation to find the right dimension for vertical storage
- The new SBM (Shaft Boring Machine) drilling technology Diameter 12 Meters
- The architecture of the "concrete storage pellet" (not column, and with Magnetit)
- The science of "keeping the DSC's closed and intact under mountain pressure"
- The architecture of the "stretching fugue" (to buffer thermodynamic expansion)
- The architecture of "efficient room usage" (no empty horizontal corridors)
- The science of encapsulation fast moving gases like IOD 129 for ever in salt
- The science of "perfect closure" (by rocksalt under massive mountain pressure)

In the end of all days, nuclear repository has to work stabile with having every barrier destroyed, and thinking it as the fuel bundles are situated naked in the old rocksalt for ever.

Only an old geology can do nuclear repository – we humans can only build temporary entrance buildings into the suitable geology. Only an old geology can do nuclear repository.

Picture 003 and 04: Rocksalt samples from the age of Perm - app. 255 years old

2. The choice of the right host-rock geology – based on epic scientific German knowledge

Canada is blessed with a huge, massive super world rocksalt geology in the north-west.

There has to be a sediment overlay – and every repository has to be so deep that coming ice ages will not be able to open them – also the perfect closure by mountain pressure requires deepness – the ideal situation is 900 Meters Sediment overlay and 1.300 Meter Salt thickness. Such geologic location circumstances can be found – and they have to be "on land - not on sea".

The requests for geological information have been send to the government geologists in New Brunswick and Nova Scotia. – But even that does not vanish the need for expensive core drilling to be ensure that the location offers what it needs for repository. Core drilling within calculation

Picture 005: Geological overview picture to the deep rocksalt geology in Canada

The choice of the right host-rock geology – based on epic scientific German knowledge

Where the salt comes up to the surface it is found and mined first – but these 5,5 km high salt domes are just a part of the rocksalt – the domes are usually the "anomalies" of a huge rocksalt cushion – they are also 250 Mio. years old – formed just after the salt was there by weakness of the surrounding areas the salt could creep up slowly. – Most of the rocksalt cushion is like a more or less flat landscape. – The deep salt is not so easy to find – only deep core drilling can identify these "cushions" – They are always there – One just have to find them …

This is how an equivalent geology cut looks like in Germany ("Zechstein"- also from Perm)

Abb. 3 Schnitt durch verschiedene Zechstein-Salzstrukturen (z) in SW-Mecklenburg (LUNG 2002, verändert)

Fig. 3 Section through different Zechstein salt structures (z) in SW Mecklenburg (LUNG 2002, modified)

The choice of the right host-rock geology - based on epic scientific German knowledge

The best way to identify a location that is prosperous for core drilling is by looking into the geological gravity lines maps – rocksalt (2,2 kg/dm3) to sediments (2,5 kg/dm3) can be told apart by gravity measurements – the resulting map can give a good idea of how the salt is formed in the underground – for further information you have to consult the geologist ...

Figure 47. Gravity map, Cumberland subbasin, Nova Scotia.

DE 1.4. for N	SHD 1 CA IWMO								
	0.00 m 1 bar			0.00 m Biosphere					3
. of GWI			Sediments Heat Conductivity Sediment Rock app. 2 bis 3 Wimok		ents				
sing bo	-300 m +65 bar =		2 200 bis 2 500 Kg/m ³	-300 m +9°C	dim	TREMAR		- Pal	-
578 m. ca	6,5 MPa	Groundwiller requires possible "Grouting Action"	GroLindwater		eter Se			3	
-	-600 m +129 bar		NWMO before	-600 m +18*C	6 Me			DB	HD 1.4.1 Canada
300 m.	12,9 MPa		e Inthin		906	1			11.1
	-900 m	250 Mio. years old	Max. depth dt new Itee Agerissante	-900 m		-		7-1	/
ure by essure	+194 bar 19,4 MPa	Rocksalt "Halt" "Heat Conductivity" Rocksalt =	Concrete Pellets Heat conductivity concrete =	+27°C					
m. Clos ntain-pr	1 200	5.6 WimsK Density app. 2.200 Kg/m ³	2,1 Wittek Density app. 3.000 Kg/m ³	1 200	gy	9	1.349 m ³ - 146 m ³	= 1.203 m ³	
415 I moui	+259 bar 25,9 MPa	+ 801 °C Boil-temp. + 1.465 °C Closure by	up to + 400°C full compressive strength	+36*C	eolo				
		and natural "Mountain- Pressure"	Molt-temp. + 1.350 °C		alt g		Ko.	2	
ge area	-1.500 m +324 bar	Heat-Emissions of 832 old DSC Containers taken in account here with	nuclear repository for 832 old DSC Containers Dry Storage	-1.500 m +45°C	ocks		Pellet Clameter #	36.11 m	
C stora	32,4 MPa After drilling the notisalt "Intrys" after 3-4 yes the pressure on the concrete ring is	This heat 3 can not be = taken in from the Mountain	in rocksalt the hard gamma rays would only reach 30 cm	Double redundant cool air conditioning of deep building site Drilling hele Stabes open during the	terr	0840 1	1.) Canada madaar maaddary oo	unorete dorage pelat	
ter DS(that time the storage has to be finished ! -1.800 m	The heat will	inclusion of IOD 129 gaters for one eternity	-1.800 m) Me	3.8	2.32, 3.44	2.32	55
785 Me	+388 bar 38.8 MPa After building the concerter ing back the mostly vertical	sum up for 400 years and then slowly go off terrain elevation	in rock salt "Pellets" because of heat expansion AND for the	+54°C Usage of Flow-Ice in Buckets - more effective then the cool air system	.300	7.65	Dec		
	also goes into the open gap, finds the sait grain and presses nocksait again - that is perfect CLOSURE by mountain pressure	from heat expansion app. 7,6 m Radius 185 m	Earthquake- case are constructively necessary	in a Flow ite take installation-better) there is nearly sery little heat coming in new, only (5.6 M/max)		2			_
100	+453 bar 45.3 MPa	258 Mio. years old		+63*C		- 🛝		4	L.
ist of the earth	-2.400 m +518 bar 51.8 MPa	Volcanic crust of the earth Heat Conductively roots app.		-2.400 m +72*C		and	5 0 7 1 3		
anic cru	-2.700 m	2 bis 3 Dens 2,200 t Kg	WinneK hy app: sis 2.500 / m ³	-2.700 m		We calculate As Canada g 30 DBHD's fi	with 83.200 tons net of so much spent Can or a price of app. 19,7	in 8.320 DSC o du fuel it will m Bio. CAD - take	ontainers III eed to build s 80 years ?
volca	+583 bar 58.3 MPa			+81°C		wat strange built strange to 20 years to post	w it's stored	- And Annual State	
зно	N Brun converses er of sassatecherer Maine			ABLANDO ASHO		Rach 4 of pro-		The second secon	
DBHD Canada									
There is Sait Domes between Pagwash and Wentworth Station / NB / Canada									
						A 0.00 = xx meters above Top Rocksalt 400 meters BBHD 1.4.1 Canada, d spent fuel "Deep Big 8 Deep, safe, contoring"	e sea L (Location xx*xx/sx rs, Thickness 1.300 meters rep safe nuclear reposito tole Disposal* / Ventical C DSC Container reposito	curve output - Pro ax" North / xx"xx's s / geol. deepstep ory, 83.200 tons Castar Storage "with the white	*3.0 °C / 100 meters
and the	N.C.	There is a Rockult of given in G Good for a responsive Name	nazive leotagy nuclear we just		ja,	Containers in concrete Canada - for: Ontario P NMMO, 22 St. Clair Ave Ingenieur- und Archite	magnetit pellets in rocksall over, Bruce Power, New Br nee East, 6th Ploor Taronic Aturbürs Goebel / Devi	SBM drilling unswick Power o. ON M4T253	Repetition and Architekture base Constant Report of Tension 1.4.1 Sections Distributions Di
	1	diling dat then 2.00 make a m dever det Diero 1.4.1	i desper lin lo pi for a lion (Canada	A Jam		B32 Wiles 5: Weberson Date Place DBHD 1.4.1 Canada 024 DBHD_1	Swizerland / Ratsteich 15, Notice Resolucy with 12 with 4.1_Canada_DSC	19057 Solwerin 1905 K.W Centeren disposal	In Separate Section III Sequence 2014 Instant 2019 Net March 2019 Net Marc

	Α	В	С	D	E	F	G	Н				
			Versio	0.2.4	http://www	w dbbd_blw do + bttp:/	www.ing-goobel.d	0				
1		T Version 0.2.4 http://www.ubid=nw.ue + http://www.nig-goebei.de										
		Calculation 10 x DBHD 1 / 1 Canada nuclear repository										
2		Ca	iculation 1	D X DRHD T	.4.1 Canada	a nuclear repo	ository					
3		Last edit: 18. March 2019 / DiplIng. Volker Goebel Switzerland / Nuclear Repository Planner ww										
4		Capacity : 8.320 DSC's Canada (white 60 tons concrete Dry Storage Container with +10 tons net spent fuel)										
5		Repository-Storage-Depth in DBHD 1.4.1 Canada : from -1.350 Meters down to -2.100 Meters										
6		Based on : Draft-Planning from 2014 - 2019 actually in Version 1.4.1 - Final for NWMDER										
7					,							
7		ONTARIC	PAWFR	Bruce	Power							
7			GENERATION	Diace	UVVCI	Énergie NB Power						
/												
		Turne of invest	A	Offer / Overte	Fastar	Tatal	Commont	duura				
<u>'</u>		Type of invest	Amount	Offer / Quote	Factor	Iotai	Comment	awg				
1		Denesitery Diane	2014 2010 (5 25	or hint from :	E62'000 CAD		Draft Diana, B. Diana					
<u>+</u>		Repository Plans	2014-2019 (5,25 yrs)	Ing. V. Goebel + I.	562'000 CAD	2'950'000 CAD	Draft-Plans, B-Plans	yes				
۲ ۲		Prope-Drillings	20 X	from local own	9 500 000 CAD	190 000 000 CAD	10 x 110 000	\vdash				
2		Shaft-Boring Ma		Herrenknocht AC	90'000'000 CAD	360'000'000 CAD	2 vrs. delivery time	VOC				
;		External streats	70 km	make-over	50 000 000 CAD		pew / enhance	yes				
	_	E-powerconnection				38'000'000 CAD	10 kV mod voltage					
7	_	Water-connection	10 X	incl water		45'000'000 CAD	10 bar with DN 200					
, l	_	Internal Logistics	10 X	anticipation		75'000'000 CAD	10 building sites					
		Drilling platforms	10 ×		1500 CAD/m2	645'000'000 CAD	floors and walls	Ves				
۶ ۱	_	Mat. storage ring	10 x	70 000 m3	1350 CAD/m3	945'000'000 CAD	floors and walls	ves				
1		Conveyor Belts	10 X	70.000 1115	1350 CAD/115	150'000'000 CAD	diverse types	yes				
<u>+</u>		Hoppy load trucks	5 X			22'500'000 CAD	Dump trucks					
		Compensationes	20.000 Shares	direct local neonle	45'000 CAD	600'000'000 CAD	navment not bribe	VOS				
<u>}</u>	_	Planning Offices	20.000 Shares	many disciplinos	43 000 CAD	308'000'000 CAD	over 80 vears	yes				
5			Scientific expertise	many agencies		124'000'000 CAD	to Gov Agencies					
		Start-Setting SBM	10 x	Thyssen Schachthau	4'500'000 CAD	45'000'000 CAD	temp Structures					
7		Shaft Drills D-12 m	10 x	Thyssen Schachtbau	52'000'000 CAD	520'000'000 CAD	autom Maschino					
<u>,</u>		Spray-concr -wall	0 3 m2 v 1 315 m	12 220 m2 v 10	900 CAD/m3	110'070'000 CAD	stool_fibre_amored	VOC				
		Shaft completition	6 sets	Siemag Techerg	45'000'000 CAD	270'000'000 CAD	Vent Transport	yes				
		Air-Conditioning	5 v	Siemag Techerg	10'500'000 CAD	52'500'000 CAD	cold dry air IN					
1		Flow-Ice Pining	5 x	Siemag Techerg	9'000'000 CAD	45'000'000 CAD	50 Liters / Sec					
2		Cable-Drum-Houses	10 x	90.000 m3 S T	1'500 CAD	1'350'000'000 CAD	House with crane	Ves				
2		Cabledrum&Motor	<u>10 x</u>	Siemag Techerg	6'000'000 CAD	30'000'000 CAD	Drum-Diam =14 m	yes				
4		Work-Over Rigs	3 x	Steelbuilders	4'800'000 CAD	14'400'000 CAD	with return nulley	VAS				
5		Dyneema Rones	16 x	Gleistein DF	4'400'000 CAD	70'400'000 CAD	$D=60 \text{ mm } 2 \ 100 \text{ m}$, 05				
6		Transition Cone	10 x	concrete constr	1'100'000 CAD	11'000'000 CAD	12 m. to 16 18 m	Ves				
7		Hole-opening	10 x	to Diam. = 16.2 m	2'700'000 CAD	27'000'000 CAD	with chain-saws	,05				
8		Staff 80 years	50 Man&Woman	4 h. shifts down t	2,00,000,000	3'100'000'000 CAD	Work & Safety					
9		Rocksalt-Salt-Sale	10 x 310.000 m3	rough quality	75 CAD/m3	- 232'500'000 CAD	Salt many uses	K+S				
5		Concrete-Pellets	832 Pellets	1.203 m3 x 832 x 10	150 CAD/m3	1'501'344'000 CAD	Quality-Concrete	ves				
1		Sand/fine gravel	832 Lavers 1m	206 m3 x 832 x 10	105 CAD/m3	179'961'600 CAD	D = max 3 mm	,				
2		Magnetit nowder	832 Portions	70 m3 x 832 x 10	1020 CAD/m3	582'400'000 CAD	Rio Tinto, Billiton	ves				
3		Closure works	10 x	own Salt grain	1020 0407110	134'000'000 CAD	Salt + M. Pressure	,				
4		building back	10 x	Striteart grain		30'000'000 CAD	farmland again					
5		Unforseeables	4%			471'281'024 CAD	the un-expected	\vdash				
5		Total	March 2019	Version 24		12'253'306'624 CAD	and an anpeoted	\vdash				
, I												
								\vdash				
			ctroat transmission			12 E Bio CAD	Ingenieur- und	F				
2		plus street - snip	- street transports	, plus law cases		12,5 BIO. CAD	Goebel GmbH	F				
	-(canaci	TV X -			tainer		\vdash				
2	1		.,			Carret	doop roots	colt				
	02 200 tone coost Condu fuel deep rocksa							wick				
		EN 010 Calerda	tion DPUD 141	Canada nuclear -	enositony Invest	ng Goebol for NIMAN	1 832 DC vlov					
		EN_010_Calcula	1.01_0010_1.4.1_	_canaua_nuciedr_r	epository_invest_i	Ing_GOEDEI_IOI_IVWIVIC	J_032_D3C.XISX					

2.1 First location for DBHD 1.4.1 Canada defined - based on gov. geological drill data

We managed to define a first location, because we received core drilling data from the New Brunswick geological service by Ms. Susan Johanson - Government geologist at NB / Canada

The core drilling of "Dorchester 01" undertaken by Shell in 1956 shows massive rocksalt at

Attitude : 45° 54' 51" and Longitude : 64° 31' 54"

New Brunswick / Canada

Top Salt 1.780 feet = 542 Meters Bottom Salt 4.985 feet = 1.520 Meters

that is 978 Meters rocksalt

DBHD 1.4.1 Canada

Picture 014: Location Definition for DBHD 1.4.1 Canada nuclear repository No 1

🔁 UI 325_Geology Report.pdf	
🛱 🖻 🗩 😰 🛃 🛛 New Brunswick - where there is salt - there is more sa	lt near by
reddish 1120-1130, 1135-1140 a	nd
selenite stringers throughout	- chblic
1205 1235 30 Quartz conglomerate with stringe	rs of
gypsum and selenite	
1235 1247 12 Quartz conglomerate with gypsum	and (Istrag.)
1247 1430 183 Gypsum with selepite interbedded	30
1430 1455 25 Gypsum and selenite - 50-50	
1455 * 1780 325 Selenité - gen. large crystals -	1455-1515,
1500-1000, $1700-1780$, rest gen.	small
throughout	Sarr,
1780 1800 20 , Rock salt - white with selenite .	- 50-50
1800 1860 60 Rock salt - white to water white	with
$\frac{1}{4}$ to $\frac{1}{2}$ selenite crystals 1860 2210 350 Rock salt - white to water white	with
some selenite crystals, reddis	tinge
rto crystals 2180-2210	
2210 4930 2720. Rock salt - white to water white	with
some vellow stains 2270-2280	bugnout,
There is good 978 Meters rocksalt for nuclear rep	ository
with good E42 maters sodiment overburden. The	
with good 542 meters sediment overburden - ma	IS UK !
	¢
Dorchester 01	Drill"
From To The Lithology	
4930 4985 $-$ 55 Rock salt - white to water white	a
thin stringers of selenite &	anhydrite
4985 5175 190 Anhydrite, Gypsum with selenite	crystals,
a showing of rock salt and sor	ne grey
5175 5260 85 Limestone - grey with some aphyce	5100-5175
gypsum, some thin greenish gre	inito and 💻
	ey shale
5251 Base of Windsor? (Gussow)	ey shale
Dase or writingor: (wright)	rite and by shale
	irite and by shale
DPUD 1 4 1 Canada (tacha drawing needs avery	arite and by shale
DBHD 1.4.1 Canada / techn. drawing needs overw	ork now
DBHD 1.4.1 Canada / techn. drawing needs overw	ork now
DBHD 1.4.1 Canada / techn. drawing needs overw Ing	ork now . Goebel

Picture 015: Core Drilling Stratigraphy from "Dorchester 01" shows massive rocksalt geology

3. Decay Heat question - How many DSC's are possible in one DBHD

As the white DSC's contain un-enriched spent Candu fuel the decay heat is by far not as massive as in the German DBHD that stores Castor containers with activated enriched fuel and vitrified waste. - That means - the Canadian DBHD can contain a lot more tons within each DBHD.

Based on an .xlsx table received from NWMO we have made the following conclusions :

DSC Canada "decay heat curve" in a chart Based on an .xls table received by NWMO That is "calculated", "not measured" values IA Graphic by Dr. G. Herres / Uni. Paderborn Result : the 40 years old 70 tons DSC's give app. 1.175 KW heat out !!! good for DBHD 1.4.1 Canada / 832 DSC x 1,175 KW = 978 KW WooW - that is much less then we expected ! DBHD can take app. 3 MW - but we have only 1 MW we could even store "fresh CA DSC's" - Great news ! (much different to german spent fuel heat !!!)

Start information:

there is 384 FB (fuel bundles) in one DSC

DSC = Dry Storage Container / concrete and welded metal

1x white DSC with 3,55 x 2,12 x 2,41 Meters = 1,175 KW (40 years old)

832 DSC's x 1.175 KW = 977,6 KW = 0,98 MW = 1 MW

DBHD can take up to 2,83 MW per column with German Castor containers

with only 1 MW decay heat from the DSC's the DBHD 1.4.1 Canada is SAFE

Picture 017: Castor with enriched spent fuel and DSC with unenriched spent fuel

4. How to bring the DSC containers down into the deep rocksalt geology

Basically the transport it is done by a steel or dyneema cable and a work over rig - the DSCs travel down on a wire - a cable.

It also needs a lot more on site - but mainly - Ventilation for Airconditioning - and space for interim store of dig out and closing materials

Picture 018: Draft plan of the visible in biosphere installation required for DBHD 1.4.1 Canada

Picture 019: Draft plan - Cut of the drilling platform showing cable drum house and work over rig for transport

As these plans were originally made for the 130 tons Castor and a deepness of 3.350 meters It is very likely that a plan workover for the 70 tons DSC and a deepness of app. 2.100 meters leads to a smaller drilling platform - also the work over rigs offered today look different from what the architects technical drawing show. All plans have to refer to the site and its geology.

Picture 020

5. Completing the Diameter 12 Meter drill hole for storage work

The big hole - drilled with Shaft Boring Machine or Shaft Boring Roadheader offers 113 sqm of space that is needed for : Container on cable - Lift - Staircase - Airconditioning - Flow Ice cooling and the required tubes for concrete and electricity - Please see what is planned for Germany - Canada is similar

Picture 021: Draft plan of the D=12 Meter big hole completition for all DBHD Generation 1.4.X

Picture 022: Draft plan of how to use the Diameter 12 Meter hole - starts with a spray concrete wall of 25 cm thickness - new diameter now 11,5 Meters - keeping a circle of D = 4,8 Meters in the centre free for the "traveling Castor - the travelling DSC container" - on the sides you see 4 big blue sheet metal tube for air-conditioning - you also the idea of a lift and / or protection chamber - there is a steel platform leading to the staircase - grey is the pipes for concrete - orange is the pipes for electricity and the small blue tubes are for the flow ice cooling system - we have to provide +16°C in a very deep environment that usually got +60 °C - cooling out the big hole is one of the main tasks to enable the staff to open the drill hole from 12 to 18 Meters and to cast the DSC or Castor containers into concrete.

Picture 023: Draft of situation in the storage area Diameter 18 Meters

The Diameter 12 goes down to the bottom, then the Diameter is opened with chain saws to 18 Meters Time to cast the first storage pellet - build back the hole completion on more then 7,55 Meters and cast the next concrete pellet. - There is a lot of work to be done by hand and it takes a hour to travel down - 3-4 hours of work on the bottom and an hour to travel up again. - Very short shifts please ...

Picture 024: Draft of storage work in the storage area Diameter 18 Meters

There is man pushing the heavy Containers into the right position - the concrete from the bottom cast have to be solid enough to take the weight of the Containers placed - when all eight Containers are placed - the casting of the concrete pellet can be completed. - Work place temperature there +16 °C.

6. Conclusion

DBHD 1.4.1 Canada is a very ambitions building plan - and also the only solution for the safe long term storage of spent nuclear fuel. - It is a 73 to 80 years building plan that provides safety to Canada for one Million years and solves the nuclear storage problem with a geological waste storage.

The main item is the technical drawing - because DBHD is always a BUILDING - it is a temporary entrance building into a deep geology that is able to do what it needs - long term HLW storage ...

150.240,- Canadian Dollars cost for each white DSC for its geol. long term disposal within DBHD 1.4.1 Canada

Picture 025: Definition of cost to bring down a white DSC into geological long term storage

